Phân tích đa thức thành nhân tử là biến đổi đa thức thành dạng tích của nhiều đa thức. Đây là một kĩ thuật cực kì hữu ích giúp bạn làm nhanh các bài toán rút gọn phân thức sau này.

Bạn đang xem: Toán 8 phân tích đa thức thành nhân tử

Vậy có những cách phân tích đa thức thành nhân tử nào?

Hãy cùng tìm hiểu các phương pháp phân tích đa thức thành nhân tử hay dùng như:

đặt nhân tử chungnhóm hạng tửdùng hằng đẳng thứcphối hợp nhiều phương pháptách hạng tửđổi biến
*
*

1-Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chungBài tập SGK: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung2- Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thứcBài tập SGK: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức3- Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tửBài tập SGK: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử4-Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương phápBài tập SGK: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp5-Phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử6-Phân tích đa thức thành nhân tử bằng phương pháp thêm và bớt cùng một hạng tử

1-Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

Cách làm:

A.B + A.C = A(B + C)

Như vậy, cách làm trên chính là phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.

Mẹo phân tích đa thức thành nhân tử đầu tiên chính là xem có nhân tử chung nào hay không hoặc có thể tạo ra nhân tử chung không.

Video bài giảng:


*
*

Phân tích đa thức 15x³ − 5x² + 10x thành nhân tử.

Giải:

Ta nhận thấy ba đơn thức thành phần có điểm chung là đều chứa 5x. Vậy ta đặt 5x làm nhân tử chung.

Ta có: 15x³ − 5x² + 10x = 5x.3x² − 5x.x + 5x.2 = 5x(3x² − x + 2)

*
*

Phân tích đa thức thành nhân tử:

a) x² − x = x(x − 1)

b) 5x²(x − 2y) − 15x(x − 2y) 

Ta đặt x − 2y là nhân tử chung. 

5x²(x − 2y) − 15x(x − 2y) = (x − 2y)(5x² − 15x) 

c) 3(x − y) − 5x(y − x) 

Chú ý: tính chất A = −(−A)

Ta thấy có x − y và y − x, muốn có chung nhân tử x − y ta làm như sau:

3(x − y) − 5x(y − x) = 3(x − y) + 5xy(x − y) = (x − y)(3 + 5xy)

*
*

Tìm x sao cho 3x² − 6x = 0.

Giải:

Đầu tiên ta phân tích đa thức thành nhân tử:

3x² − 6x = 3x(x − 2) = 0

Tích trên bằng 0 khi một trong các nhân tử bằng 0.

Ta có x = 0 hoặc x − 2 = 0.

Vậy x = 0 hoặc x = 2.

Bài tập SGK: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

Bài 39.

Phân tích đa thức thành nhân tử:

a) 3x − 6y = 3(x − 2y);

b)

*
*

c) 14x² − 21xy² + 28x²y² = 7x(2x − 3y² + 4xy²) 

d)

*
*

e) 10x(x − y) − 8y(y − x) = 10x(x − y) + 8y(x − y) = 2(x − y)(5x + 4y)

Bài 40.

Tính giá trị của biểu thức:

a) 15. 91,5 + 150.0,85 = 15(91,5 + 8,5) = 15.100= 1500

b) x(x − 1) − y(1 − x) tại x = 2001 và y = 1999.

Ta phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung:

x(x − 1) − y(1 − x)

= x(x − 1) + y(x − 1)

= (x − 1)(x + y)

= (2001 − 1)(2001 + 1999)

= 2000.4000 = 8000000

Bài 41.

Tìm x, biết:

a) 5x(x − 2000) − x + 2000 = 0

Đầu tiên ta phải phân tích đa thức thành nhân tử,. Vì chưa có nhân tử chung, ta phải làm xuất hiện nhân tử chung.

5x(x − 2000) − x + 2000 

= 5x(x − 2000) − (x − 2000)

= (x − 2000)(5x − 1) = 0

⇔ x = 2000 hoặc 5x − 1 = 0

⇔ x = 2000 hoặc x = 1/5

b) x³ − 13x = 0

⇔ x(x² − 13) = 0

⇔ x = 0 hoặc x² = 13 

⇔ x = 0 hoặc x = ±√13

Bài 42.

Chứng minh rằng

*
*
chia hết cho 54 (với n là số tự nhiên).

Giải:

Ta phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung: 

*
*

 

2- Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

Cách làm:

Dùng những hằng đẳng thức đáng nhớ để biến đổi đa thức về dạng tích nhiều đa thức.

Vậy để sử dụng phương pháp này để phân tích đa thức thành nhân tử, ta phải thuộc những hằng đằng thức đáng nhớ và nhận ra dạng của nó.

(A + B)² = A² + 2AB + B² 

(A − B)² = A² − 2AB + B² 

A² − B² = (A − B)(A + B)

(A + B)³ = A³ + 3A²B + 3AB² + B³

(A − B)³ = A³ − 3A²B + 3AB² − B³

A³ + B³ = (A + B)(A² − AB + B²)

A³ − B³ = (A − B)(A² + AB + B²)

Ví dụ: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

*
*

Phân tích đa thức thành nhân tử:

a) x² − 4x + 4 = x² − 2.2x + 2² = (x − 2)²

b) x² − 4x + 4 − y² = (x − 2)² − y² = (x − 2 − y)(x − 2 + y)

c) 1 − 8x³ = 1³ − (2x)³ = (1 − 2x)(1 + 2x + 4x²).

*
*

a) Phân tích đa thức thành nhân tử: x³ + 3x² + 3x + 1

Ta nhận ra đa thức trên có dạng lập phương của một tổng nên ta có:

x³ + 3x² + 3x + 1 = (x + 1)³

b) Tính nhanh: 105² − 25

Ta nhận thấy đa thức trên có dạng A² − B² nên ta có:

105² − 25 = 105² − 5² = (105 − 5)(105 + 5) = 100.110 = 11000

*
*

Chứng minh rằng (2n + 5)² − 25 chia hết cho 4 với mọi số nguyên n.

Giải:

Muốn chứng minh một đa thức chia hết cho một số nào đó, ta chỉ cần phân tích đa thức thành nhân tử và chỉ ra số đó là một nhân tử của đa thức.

Ta thấy đa thức trên có dạng A² − B² nên ta dùng hằng đẳng thức A² − B² = (A − B)(A + B) để phân tích đa thức thành nhân tử:

(2n + 5)² − 25 = (2n + 5)² − 5²

= (2n + 5 − 5)(2n + 5 + 5)

= 2n(2n + 10)

= 4n(n + 5)

Vì thế (2n + 5)² − 25 chia hết cho 4 với mọi số nguyên n.

Video bài giảng:

Bài tập SGK: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

Bài 43.

Phân tích đa thức thành nhân tử:

a) x² + 6x + 9 

Ta nhận ra dạng x² + 2x.3 + 3² đúng không. 

x² + 6x + 9 = (x + 3)²

b) 10x − 25 − x² 

Có thể nhận ra dạng của hằng đẳng thức bình phương của một hiệu nếu ta viết lại đa thức:

10x − 25 − x²

= − (x² − 10x + 25) 

= − (x − 5)²

 

*
*
 

Các em có nhận ra dạng A³ − B³ không?

*
*

*
*

*
*

 

*
*

Các em có thấy đa thức dạng A² − B² không?

*
*

*
*

*
*

Bài 44.

Phân tích đa thức thành nhân tử:

*
*

= <(a + b)² + (a + b)(a − b) + (a − b)²>

= 2b(a²+ 2ab + b² + a² − b² + a² − 2ab + b²)

= 2b(3a² + b²)

c) (a + b)³ + (a − b)³

= <(a + b)² − (a + b)(a − b) + (a − b)²>

= 2a

= 2a(a²+ 3b²) 

= (2x + y)³

e) −x³ + 9x² − 27x + 27 

= − (x − 3)³

Bài 45. 

Tìm x, biết:

a) 2 − 25x² = 0

Đầu tiên ta phải phân tích đa thức thành nhân tử, dựa vào hằng đẳng thức

A² − B² = (A − B)(A + B)

2 − 25x² = 0 

⇔ (√2 − 5x)(√2 + 5x) = 0

⇔ √2 − 5x = 0 hoặc √2 + 5x = 0

Nếu √2 − 5x = 0 ⇔ x = √2/5.

Nếu √2 + 5x = 0 ⇔ x = – √2/5.

*
*

Ta phân tích đa thức thành nhân tử theo hằng đẳng thức (A − B)² = A² − 2AB + B².

*
*

*
*

*
*

*
*

Bài 46.

Xem thêm:
Điểm Chuẩn Học Viện Báo Chí Và Tuyên Truyền 2020 Tăng Mạnh, Điểm Chuẩn Học Viện Báo Chí

Tính nhanh: 

a) 73² − 27² = (73 − 27)(73 + 27) = 46.100 = 4600

b) 37² − 13² = (37 − 13)(37 + 13) = 24. 50 = 1200

c) 2002² − 2² = (2002 − 2)(2002 + 2) = 2000.2004 = 4008000

3- Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử

Cách làm:

Khi phân tích một đa thức thành nhân tử mà không thấy nhân tử chung hay không có dạng hằng đẳng thức nào đã học, ta cần một phương pháp khác.

Mục đích: Đó là làm thế nào để xuất hiện nhân tử chung, là làm thế nào để xuất hiện hằng đẳng thức