Trong mặt phẳng tọa độ \(Oxy\), ảnh của đường tròn \(\left( C \right):{\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} = 4\) qua phép tịnh tiến theo vectơ \(\vec v = \left( {3;2} \right)\) là đường tròn có phương trình:

Phương pháp giải

- Tìm tọa độ ảnh của tâm đường tròn qua phép tính tiến.

Bạn đang xem: Tìm ảnh của đường tròn qua phép tịnh tiến

Bạn đang xem: Tìm ảnh của đường tròn qua phép tịnh tiến

- Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính.

Lời giải của GV capdoihoanhao.vn

Đường tròn \(\left( C \right)\) có tâm \(I\left( { - 1;3} \right),\) bán kính \(R = 2.\)

Gọi \(I"\left( {x;y} \right)\) là ảnh của \(I\left( { - 1;3} \right)\) qua phép tịnh tiến vectơ \(\vec v = \left( {3;2} \right)\).

Ta có \(\overrightarrow {II"} = \vec v \Leftrightarrow \left\{ \begin{array}{l}x - \left( { - 1} \right) = 3\\y - 3 = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 5\end{array} \right. \Rightarrow I"\left( {2;5} \right)\)

Vì phép tịnh tiến bảo toàn khoảng cách nên \( R" = R = 2.\)

Vậy ảnh của đường tròn \(\left( C \right)\) qua phép \({T_{\overrightarrow v }}\) là đường tròn \(\left( {C"} \right)\) có tâm \(I"\left( {2;5} \right),\) bán kính \(R" = 2\) nên có phương trình \({\left( {x - 2} \right)^2} + {\left( {y - 5} \right)^2} = 4.\)

Đáp án cần chọn là: b

...


*

*

*

*

*

Cho hai đường thẳng cắt nhau $d$ và $d"$. Có bao nhiêu phép tịnh tiến biến đường thẳng $d$ thành đường thẳng $d"$?

Cho hai đường thẳng song song $a$ và $b$, một đường thẳng $c$ không song song với chúng. Có bao nhiêu phép tịnh tiến biến đường thẳng $a$ thành đường thẳng $b$ và biến đường thẳng $c$ thành chính nó?

Trong mặt phẳng tọa độ $Oxy$ cho đồ thị của hàm số \(y = \sin x\). Có bao nhiêu phép tịnh tiến biến đồ thị đó thành chính nó

Trong mặt phẳng tọa độ $Oxy$ , nếu phép tịnh tiến biến điểm \(A\left( {3;2} \right)\) thành điểm \(A"\left( {2;5} \right)\) thì nó biến điểm \(B\left( {2;5} \right)\) thành:

Trong mặt phẳng tọa độ $Oxy$, nếu phép tịnh tiến biến điểm \(A\left( {2; - 1} \right)\) thành điểm \(A"\left( {3;0} \right)\) thì nó biến đường thẳng nào sau đây thành chính nó?

Trong mặt phẳng tọa độ $Oxy$ cho hai đường thẳng song song $a$ và $a"$ lần lượt có phương trình \(2x - 3y - 1 = 0\) và \(2x - 3y + 5 = 0\). Phép tịnh tiến theo vectơ nào sau đây không biến đường thẳng $a$ thành đường thẳng $a"$ ?

Trong mặt phẳng tọa độ $Oxy$ cho hai đường thẳng song song $a$ và $a"$ lần lượt có phương trình \(3x - 4y + 5 = 0\) và \(3x - 4y = 0\). Phép tịnh tiến theo \(\overrightarrow u \) biến đường thẳng $a$ thành đường thẳng $a"$. Khi đó độ dài bé nhất của vectơ \(\overrightarrow u \) bằng bao nhiêu?

Trong mặt phẳng tọa độ $Oxy$ cho parabol có đồ thị \(y = {x^2}\). Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {2; - 3} \right)\) biến parabol đó thành đồ thị của hàm số:

Cho hai đường thẳng song song $a$ và $b$. Phát biểu nào sau đây là đúng?

Chọn khẳng định sai trong các khẳng định sau:

Trong hệ tọa độ $Oxy$, cho phép biến hình $f$ biến mỗi điểm $M\left( {x;y} \right)$ thành điểm $M"\left( {x";y"} \right)$ sao cho $x" = x + 2y;\,\,y" = - 2x + y + 1$. Gọi $G$ là trọng tâm của $\Delta ABC$ với $A\left( {1;2} \right),\,\,B\left( { - 2;3} \right),\,\,C\left( {4;1} \right)$.

Phép biến hình $f$ biến điểm $G$ thành điểm $G"$ có tọa độ là:

Cho hai hình vuông ${H_1}$ và ${H_2}$ bằng nhau. Trong các mệnh đề sau mệnh đề nào đúng?

Trong mặt phẳng với hệ tọa độ $Oxy$ , cho hai parabol: $\left( P \right):y = {x^2}$ và $\left( Q \right):y = {x^2} + 2x + 2$. Để chứng minh có một phép tịnh tiến $T$ biến $\left( Q \right)$ thành $\left( P \right)$ , một học sinh lập luận qua ba bước như sau:

- Bước 1: Gọi vectơ tịnh tiến là $\overrightarrow u = \left( {a;b} \right)$, áp dụng biểu thức tọa độ của phép tịnh tiến:

$\left\{ \begin{array}{l}x" = x + a\\y" = y + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = x" - a\\y = y" - b\end{array} \right.$

- Bước 2: Thế vào phương trình của $\left( Q \right)$ ta được:

$y" - b = {\left( {x" - a} \right)^2} + 2\left( {x" - a} \right) + 2 \Leftrightarrow y" = x{"^2} + 2\left( {1 - a} \right)x" + {a^2} - 2a + b + 2$

Suy ra ảnh của $\left( Q \right)$ qua phép tịnh tiến $T$ là parabol $\left( R \right):y = {x^2} + 2\left( {1 - a} \right)x + {a^2} - 2a + b + 2$

- Bước 3: Buộc $\left( R \right)$ trùng với $\left( P \right)$ ta được hệ: $\left\{ \begin{array}{l}2\left( {1 - a} \right) = 0\\{a^2} - 2a + b + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 1\end{array} \right.$

Vậy có duy nhất một phép tịnh tiến biến $\left( Q \right)$ thành $\left( P \right)$ , đó là phép tịnh tiến theo vectơ $\overrightarrow u = \left( {1; - 1} \right)$


Trong mặt phẳng tọa độ \(Oxy\), ảnh của đường tròn \(\left( C \right):{\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} = 4\) qua phép tịnh tiến theo vectơ \(\vec v = \left( {3;2} \right)\) là đường tròn có phương trình:


- Tìm tọa độ ảnh của tâm đường tròn qua phép tính tiến.

Bạn đang xem: Tìm ảnh của đường tròn qua phép tịnh tiến

- Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính.


Đường tròn \(\left( C \right)\) có tâm \(I\left( { - 1;3} \right),\) bán kính \(R = 2.\)

Gọi \(I"\left( {x;y} \right)\) là ảnh của \(I\left( { - 1;3} \right)\) qua phép tịnh tiến vectơ \(\vec v = \left( {3;2} \right)\).

Ta có \(\overrightarrow {II"} = \vec v \Leftrightarrow \left\{ \begin{array}{l}x - \left( { - 1} \right) = 3\\y - 3 = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 5\end{array} \right. \Rightarrow I"\left( {2;5} \right)\)

Vì phép tịnh tiến bảo toàn khoảng cách nên \( R" = R = 2.\)

Vậy ảnh của đường tròn \(\left( C \right)\) qua phép \({T_{\overrightarrow v }}\) là đường tròn \(\left( {C"} \right)\) có tâm \(I"\left( {2;5} \right),\) bán kính \(R" = 2\) nên có phương trình \({\left( {x - 2} \right)^2} + {\left( {y - 5} \right)^2} = 4.\)

Đáp án cần chọn là: b

...

Xem thêm: Đế Quốc Đông La Mã - Đế Quốc Byzantine(Đế Chế Đông La Mã) (Lịch Sử)

Bài tập có liên quan

Phép tịnh tiến Luyện Ngay


Trong mặt phẳng với hệ tọa độ $Oxy$ , cho $T$ là một phép tịnh tiến theo vectơ $\overrightarrow u $ biến điểm $M\left( {x;y} \right)$ thành điểm $M"\left( {x";y"} \right)$ với biểu thức tọa độ là: $x = x" + 3;\,\,y = y" - 5$. Tọa độ của vectơ tịnh tiến $\overrightarrow u $ là:

Cho đường thẳng $d$. Có bao nhiêu phép tịnh tiến biến đường thẳng $d$ thành chính nó?

Cho hai đường thẳng cắt nhau $d$ và $d"$. Có bao nhiêu phép tịnh tiến biến đường thẳng $d$ thành đường thẳng $d"$?

Cho hai đường thẳng song song $a$ và $b$, một đường thẳng $c$ không song song với chúng. Có bao nhiêu phép tịnh tiến biến đường thẳng $a$ thành đường thẳng $b$ và biến đường thẳng $c$ thành chính nó?

Trong mặt phẳng tọa độ $Oxy$ cho đồ thị của hàm số \(y = \sin x\). Có bao nhiêu phép tịnh tiến biến đồ thị đó thành chính nó

Trong mặt phẳng tọa độ $Oxy$ , nếu phép tịnh tiến biến điểm \(A\left( {3;2} \right)\) thành điểm \(A"\left( {2;5} \right)\) thì nó biến điểm \(B\left( {2;5} \right)\) thành:

Trong mặt phẳng tọa độ $Oxy$, nếu phép tịnh tiến biến điểm \(A\left( {2; - 1} \right)\) thành điểm \(A"\left( {3;0} \right)\) thì nó biến đường thẳng nào sau đây thành chính nó?

Trong mặt phẳng tọa độ $Oxy$ cho hai đường thẳng song song $a$ và $a"$ lần lượt có phương trình \(2x - 3y - 1 = 0\) và \(2x - 3y + 5 = 0\). Phép tịnh tiến theo vectơ nào sau đây không biến đường thẳng $a$ thành đường thẳng $a"$ ?

Trong mặt phẳng tọa độ $Oxy$ cho hai đường thẳng song song $a$ và $a"$ lần lượt có phương trình \(3x - 4y + 5 = 0\) và \(3x - 4y = 0\). Phép tịnh tiến theo \(\overrightarrow u \) biến đường thẳng $a$ thành đường thẳng $a"$. Khi đó độ dài bé nhất của vectơ \(\overrightarrow u \) bằng bao nhiêu?

Trong mặt phẳng tọa độ $Oxy$ cho parabol có đồ thị \(y = {x^2}\). Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {2; - 3} \right)\) biến parabol đó thành đồ thị của hàm số:

Cho hai đường thẳng song song $a$ và $b$. Phát biểu nào sau đây là đúng?

Chọn khẳng định sai trong các khẳng định sau:

Trong hệ tọa độ $Oxy$, cho phép biến hình $f$ biến mỗi điểm $M\left( {x;y} \right)$ thành điểm $M"\left( {x";y"} \right)$ sao cho $x" = x + 2y;\,\,y" = - 2x + y + 1$. Gọi $G$ là trọng tâm của $\Delta ABC$ với $A\left( {1;2} \right),\,\,B\left( { - 2;3} \right),\,\,C\left( {4;1} \right)$.

Phép biến hình $f$ biến điểm $G$ thành điểm $G"$ có tọa độ là:

Cho hai hình vuông ${H_1}$ và ${H_2}$ bằng nhau. Trong các mệnh đề sau mệnh đề nào đúng?

Trong mặt phẳng với hệ tọa độ $Oxy$ , cho hai parabol: $\left( P \right):y = {x^2}$ và $\left( Q \right):y = {x^2} + 2x + 2$. Để chứng minh có một phép tịnh tiến $T$ biến $\left( Q \right)$ thành $\left( P \right)$ , một học sinh lập luận qua ba bước như sau:

- Bước 1: Gọi vectơ tịnh tiến là $\overrightarrow u = \left( {a;b} \right)$, áp dụng biểu thức tọa độ của phép tịnh tiến:

$\left\{ \begin{array}{l}x" = x + a\\y" = y + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = x" - a\\y = y" - b\end{array} \right.$

- Bước 2: Thế vào phương trình của $\left( Q \right)$ ta được:

$y" - b = {\left( {x" - a} \right)^2} + 2\left( {x" - a} \right) + 2 \Leftrightarrow y" = x{"^2} + 2\left( {1 - a} \right)x" + {a^2} - 2a + b + 2$

Suy ra ảnh của $\left( Q \right)$ qua phép tịnh tiến $T$ là parabol $\left( R \right):y = {x^2} + 2\left( {1 - a} \right)x + {a^2} - 2a + b + 2$

- Bước 3: Buộc $\left( R \right)$ trùng với $\left( P \right)$ ta được hệ: $\left\{ \begin{array}{l}2\left( {1 - a} \right) = 0\\{a^2} - 2a + b + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 1\end{array} \right.$

Vậy có duy nhất một phép tịnh tiến biến $\left( Q \right)$ thành $\left( P \right)$ , đó là phép tịnh tiến theo vectơ $\overrightarrow u = \left( {1; - 1} \right)$

Lịch thi đấu World Cup