Đề thi lớp 1
Lớp 2Lớp 2 - Kết nối tri thức
Lớp 2 - Chân trời sáng tạo
Lớp 2 - Cánh diều
Tài liệu tham khảo
Lớp 3Lớp 3 - Kết nối tri thức
Lớp 3 - Chân trời sáng tạo
Lớp 3 - Cánh diều
Tài liệu tham khảo
Lớp 4Sách giáo khoa
Sách/Vở bài tập
Đề thi
Lớp 5Sách giáo khoa
Sách/Vở bài tập
Đề thi
Lớp 6Lớp 6 - Kết nối tri thức
Lớp 6 - Chân trời sáng tạo
Lớp 6 - Cánh diều
Sách/Vở bài tập
Đề thi
Chuyên đề & Trắc nghiệm
Lớp 7Lớp 7 - Kết nối tri thức
Lớp 7 - Chân trời sáng tạo
Lớp 7 - Cánh diều
Sách/Vở bài tập
Đề thi
Chuyên đề & Trắc nghiệm
Lớp 8Sách giáo khoa
Sách/Vở bài tập
Đề thi
Chuyên đề & Trắc nghiệm
Lớp 9Sách giáo khoa
Sách/Vở bài tập
Đề thi
Chuyên đề & Trắc nghiệm
Lớp 10Lớp 10 - Kết nối tri thức
Lớp 10 - Chân trời sáng tạo
Lớp 10 - Cánh diều
Sách/Vở bài tập
Đề thi
Chuyên đề & Trắc nghiệm
Lớp 11Sách giáo khoa
Sách/Vở bài tập
Đề thi
Chuyên đề & Trắc nghiệm
Lớp 12Sách giáo khoa
Sách/Vở bài tập
Đề thi
Chuyên đề & Trắc nghiệm
ITNgữ pháp Tiếng Anh
Lập trình Java
Phát triển web
Lập trình C, C++, Python
Cơ sở dữ liệu

Lý thuyết, các dạng bài tập Toán 8Toán 8 Tập 1I. Lý thuyết & trắc nghiệm theo bàiII. Các dạng bài tậpI. Lý thuyết & trắc nghiệm theo bàiII. Các dạng bài tậpToán 8 Tập 1I. Lý thuyết & trắc nghiệm theo bài họcII. Các dạng bài tập
Lý thuyết Chia đơn thức cho đơn thức hay, chi tiết
Trang trước
Trang sau
Lý thuyết Chia đơn thức cho đơn thức
Bài giảng: Bài 10: Chia đơn thức cho đơn thức - Cô Phạm Thị Huệ Chi (Giáo viên romanhords.com)
A. Lý thuyết
1. Đơn thức chia cho đơn thức
Với A và B là hai đơn thức, B≠0. Ta nói A chia hết cho B nếu tìm được một đơn thức Q sao cho A = B.Q.
Bạn đang xem: Quy tắc chia đơn thức cho đơn thức
Trong đó:
A là đơn thức bị chia.
B là đơn thức chia.
Q là đơn thức thương (hay gọi là thương)
Kí hiệu: Q = A : B hoặc

2.Quy tắc
Nhớ lại kiến thức cũ: Ở lớp 7 ta biết: Với x≠0; m, n ∈ N; m ≥ n thì:
xm : xn = xm - nnếu m>n
xm : xn = 1 nếu m=n
(xn)m = xn.m
Quy tắc:
Muốn chia đơn thức A cho đơn thức B (trường hợp A chia hết cho B) ta làm như sau:
+ Chia hệ số của đơn thức A cho hệ số của đơn thức B.
+ Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.
+ Nhân các kết quả vừa tìm được với nhau.
Ví dụ: Thực hiện phép tính
a, ( - 2 )5:( - 2 )3.
b, ( xy2 )4:( xy2 )2
Hướng dẫn:
a)Ta có: ( - 2 )5:( - 2 )3 = ( - 2 )5 - 3 = ( - 2 )2 = 4.
b)Ta có: ( xy2 )4:( xy2 )2 = x4y8:x2y4 = x4 - 2.y8 - 4 = x2y4.
B. Bài tập tự luyện
Bài 1: Tính giá trị của các biểu thức sau
a) P = 12x4y2:(- 9xy2 ) tại x= -3, y= 1,005.b) Q = 3x4y3:2xy2 tại x= 2, y= 1.Hướng dẫn:
a)Ta có P = 12x4y2:( - 9xy2 ) = 1/2 - 9x4 - 1y2 - 2 = - 4/3x3
Với x= -3, y= 1,005 ta có P = - 4/3( - 3 )3 = 36.
Vậy P = 36
b)Ta có Q = 3x4y3:2xy2 = 3/2x4 - 1y3 - 2 = 3/2x3y.
Xem thêm: Dàn Ý Thuyết Minh Về Áo Dài Việt Nam Chọn Lọc, Top 5 Dàn Ý Thuyết Minh Về Chiếc Áo Dài Việt Nam
Với x= 2, y= 1 ta có Q = 3/2( 2 )3.1 = 12.
Vậy Q = 12
Bài 2: Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến y (x≠0; y≠0) với biểu thức đó là A = 2/3x2y3:( - 1/3xy ) + 2x( y - 1 )( y + 1 )
Hướng dẫn:
Ta có A = 2/3x2y3:( - 1/3xy ) + 2x( y - 1 )( y + 1 ) = - 2x2 - 1y3 - 1 + 2x( y - 1 )( y + 1 )
= - 2xy2 + 2x( y2 - 1 ) = - 2xy2 + 2xy2 - 2x = - 2x
⇒ Giá trị của biểu thức A không phụ thuộc vào biến y
Bài giảng: Bài 10: Chia đơn thức cho đơn thức - Cô Vương Thị Hạnh (Giáo viên romanhords.com)
Giới thiệu kênh Youtube romanhords.com
CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, romanhords.com HỖ TRỢ DỊCH COVID
Phụ huynh đăng ký mua khóa học lớp 8 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!