1. Nguyên hàm là gì?

Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) bên trên K nếu như F"(x) = f(x) với đa số x ∈ K.

Bạn đang xem: Nguyên hàm 1 u

2. đặc thù nguyên hàm

Nguyên hàm bao gồm 3 tính chất đặc biệt quan trọng cần nhớ:

*

2. Bảng nguyên hàm

a) Bảng phương pháp nguyên hàm cơ bản

*

b) Bảng nguyên hàm mở rộng

*

3. Các phương thức tính nguyên hàm

Dạng 1. Nguyên hàm cơ bản

Dạng 2. Sử dụng phương pháp ĐỔI BIẾN nhằm tìm nguyên hàm

a) Đổi thay đổi tổng quát

Bước 1: chọn t = φ(x). Trong đó φ(x) là hàm số mà ta chọn thích hợp.Bước 2: Tính vi phân nhị về dt = φ"(x)dxBước 3: bộc lộ f(x)dx = g<φ(x)>φ"(x)dx = g(t)dt.Bước 4: khi ấy $I = int fleft( x ight)dx $ $ = int gleft( t ight)dt $ $ = Gleft( t ight) + C$

Ví dụ: tìm kiếm nguyên hàm của hàm số $I = int frac1xsqrt ln x + 1 dx $

Hướng dẫn giải

Bước 1: lựa chọn $t = sqrt ln x + 1 Rightarrow t^2 = ln x + 1$Bước 2: Tính vi phân nhì về dt = – 3sinx.dxBước 3: biểu hiện $int fleft( x ight)dx = – frac13int frac1t.dt $Bước 4: lúc ấy $I = – frac13ln left| t ight| + C$ $ = – frac13ln left| 1 + 3cos x ight| + C$

b) Đổi biến dạng 1

*

c) Đổi biến tấu 2

*

Dạng 3. Nguyên hàm từng phần

*

Nguyên tắc chung để đặt u và dv: tìm được v thuận lợi và ∫v.du tính được

Nhấn mạnh: máy tự ưu tiên khi lựa chọn đặt u: “Nhất lô, nhị đa, tam lượng, tứ mũ” (hàm lôgarit, hàm đa thức, các chất giác, hàm mũ).

Ví dụ: tìm kiếm nguyên hàm của hàm số f(x) = x.e2x

Hướng dẫn giải

Bước 1: Đặt $left{ eginarrayl u = ln left( 2x ight)\ dv = x.dx endarray ight. Rightarrow left{ eginarrayl du = frac1x\ v = fracx^22 endarray ight.$

Bước 2: Ta thấy $Fleft( x ight) = int fleft( x ight) dx$ $ = fracx^22.ln left( 2x ight) – int frac1x.fracx^22 dx$ $ = fracx^22.ln left( 2x ight) – fracx^24 + C$ $ = fracx^22.left( ln left( 2x ight) – frac12 ight) + C$

Dạng 4. Phương pháp tính nguyên hàm sử dụng máy tính

Cho nguyên hàm $int fleft( x ight)dx $ = F(x) + C. Hãy kiếm tìm f(x) hoặc F(x)

Hướng dẫn

Để giải, mình đang hướng dẫn cách bấm máy tính xách tay nguyên hàm cấp tốc theo 3 cách sau:

Bước 1: nhấn shift $fracddxleft( Fleft( x ight) ight)_x = X – fleft( X ight)$

Bước 2: nhận phím Calc nhập X = 2.5

Bước 3: Đánh giá chỉ nghiệm

Nếu công dụng bằng 0 (gần bởi 0 ) thì đó là đáp án đề xuất chọn

Ví dụ: Tìm toàn bộ nghiệm của hàm số f(x) = $frac12x + 3$ là

A. $frac12.lnleft| 2x + 3 ight| + C$

B. $frac12.lnleft( 2x + 3 ight) + C$

C. Ln|2x + 3| + C

D. $frac1ln 2.$ln|2x + 3| + C

Hướng dẫn bấm máy tính

Bước 1: Nhập vào máy tính casio $fracddxleft( frac12.ln left( 2x + 3 ight ight) ight) – frac12x + 3$

Bước 2: CALC X = -2

Lưu ý: Trong hiệu quả A với C nếu đến X = 2 thì hầu như cho hiệu quả là 0. Vậy khi bao gồm trị hoàn hảo nhất thì cho X một giá bán trị cho biểu thức trong trị tuyệt đối hoàn hảo âm.

Kết luận: Chọn đáp án A.

Dạng 5. Tính nguyên hàm của hàm số

Tìm nguyên hàm dạng $left< eginarrayl I = int P(x)sin axdx \ I = int P(x)c mosaxdx endarray ight.$ với $P(x)$ là một đa thứcTa lựa lựa chọn 1 trong hai cách sau:

Cách 1: áp dụng nguyên hàm từng phần, tiến hành theo quá trình sau:

Bước 1: Đặt: $left{ eginarrayl u = P(x)\ dv = left< eginarrayl mathop m s olimits minaxdx\ mcosaxdx endarray ight. endarray ight.$ $ o left{ eginarrayl du = P"(x)dx\ v = left< eginarrayl frac – 1ac mosax\ frac m1 masin ax endarray ight. endarray ight.$Bước 2: nạm vào phương pháp nguyên hàm từng phần.Bước 3: tiếp tục thủ tục như trên ta đã khử được bậc của nhiều thức.

Xem thêm: 1 Bộ Sách Giáo Khoa Lớp 8 Bao Nhiêu Tiền, Bộ Sách Giáo Khoa Lớp 8

Cách 2: Sử dụng phương thức hệ số bất định, triển khai theo quá trình sau:

Bước 1: Ta có: $I = int P(x)c mosaxdx $ $ m = A(x)sinax + B(x)cosax + C$ $(1)$, trong những số ấy $A(x)$ với $B(x)$ là các đa thức cùng bậc với $P(x).$ Bước 2: đem đạo hàm hai vế của $(1)$: $P(x)c mosax$ $ m = A"(x)cosax – A(x)a m.sinax$ $ m + B"(x)sinax + aB(x)cosax.$Bước 3: Sử dụng cách thức hệ số biến động ta xác định được $A(x)$ cùng $B(x).$

Nhận xét: ví như bậc của đa thức lớn hơn $3$ thì giải pháp 1 trầm trồ cồng kềnh, vì lúc đó ta triển khai số lần nguyên hàm từng phần bởi với số bậc của đa thức, cho nên vì vậy ta đi đến đánh giá như sau:

Nếu bậc của nhiều thức nhỏ tuổi hơn hoặc bằng $2$: Ta sử dụng cách 1.Nếu bậc của nhiều thức lớn hơn hoặc bởi $3$: Ta thực hiện cách 2.

Ví dụ: Tìm nguyên hàm $int xsin ^2xdx .$

Giải

Ta có: $I = int xleft( frac1 – c mos2x2 ight)dx $ $ = frac12int xdx – frac12int xcos 2xdx $ $ = frac14x^2 – frac12J$ $(1).$

Tính: $J = int xcos 2xdx .$

Đặt: $left{ eginarrayl u = x\ dv = c mos2xdx endarray ight.$ $ o left{ eginarrayl du = dx\ v = frac12sin 2x endarray ight.$ $ Rightarrow J = fracx2sin 2x – frac12int sin 2xdx $ $ = fracx2sin 2x + frac14c mos2x + C.$

Thay vào $(1)$: $I = frac14x^2 – frac12left( fracx2sin 2x + frac14c mos2x ight)$ $ = frac14left( x^2 – xsin 2x – frac12c mos2x ight) + C.$

3. Bài xích tập nguyên hàm

Bài tập 2: Tìm nguyên hàm $I = int left( x^3 – x^2 + 2x – 3 ight)mathop m s olimits minxdx .$

Giải

Theo nhấn xét trên, ta sử dụng phương thức hệ số bất định. Ta có: $I = int left( x^3 – x^2 + 2x – 3 ight)mathop m s olimits minxdx $ $ = left( a_1x^3 + b_1x^2 + c_1x + d_1 ight)c mosx$ $ m + left( a_2x^3 + b_2x^2 + c_2x + d_2 ight)mathop m s olimits minx$ $(1).$

Lấy đạo hàm hai vế của $(1)$:

$ Leftrightarrow left( x^3 – x^2 + 2x – 3 ight)mathop m s olimits minx$ $ m = < ma_ m2x^3 + left( 3a_1 + b_2 ight)x^2$ $ + left( 2b_1 + c_2 ight)x + c_1 + d_2 m>cosx$$ – < ma_ m1x^3 – left( 3a_2 – b_1 ight)x^2$ $ – left( 2b_2 – c_1 ight)x + c_2 – d_1>sin x$ $(2).$

Đồng tốt nhất thức ta được: $left{ eginarrayl a_2 = 0\ 3a_1 + b_2 = 0\ 2b_1 + c_2 = 0\ c_1 + d_2 = 0 endarray ight.$ và $left{ eginarrayl – a_1 = 1\ 3a_2 – b_1 = – 1\ 2b_2 – c_1 = 2\ – c_2 + d_1 = – 3 endarray ight.$ $ Rightarrow left{ eginarrayl a_1 = – 1;a_2 = 0\ b_1 = 1;b_2 = 3\ c_1 = 4;c_2 = – 2\ d_1 = 1;d_2 = – 4 endarray ight.$

Khi đó: $I = left( – x^3 + x^2 + 4x + 1 ight)c mosx$ $ m + left( m3 mx^ m2 – 2x + 4 ight)mathop m s olimits minx + C.$