+) Cho khoảng \(K\) chứa điểm \(x_0\) và hàm số \(y = f(x)\) xác định trên \(K\) hoặc trên \(K\backslash {\{x_0}\rm{\} }.\)
\(\underset{x\rightarrow x_{_{0}}}{\lim} f(x) = L\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n ∈ K\backslash {\rm{\{ }}{x_0}{\rm{\} }}\) và \(x_n\rightarrow x_0\), ta có \(\lim f(x_n) =L\).
+) Cho hàm số \(y = f(x)\) xác định trên khoảng \((x_0; b)\).
Bạn đang xem: Giới hạn đặc biệt của lim
\(\underset{x\rightarrow x_{_{0}}^{+}}{\lim} f(x) = L\) khi và chỉ khi dãy số \((xn) bất kì, \(x_0 ,ta có \(\lim f(x_n) = L\).
+) Cho hàm số \(y = f(x)\) xác định trên khoảng \((a; x_0)\).
\(\underset{x\rightarrow x_{_{0}}^{-}}{\lim} f(x) = L\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(a \(\lim f(x_n) = L\).
+) Cho hàm số \(y = f(x)\) xác định trên khoảng \((a; +∞)\).
\(\underset{x\rightarrow+\infty }{\lim} f(x) = L\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n> a\), \(x_n\rightarrow +\infty\) thì \(lim f(x_n) = L\).
+) Cho hàm số \(y = f(x)\) xác định trên khoảng \((-∞; a)\).
\(\underset{x\rightarrow-\infty }{\lim} f(x) = L\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n2. Giới hạn vô cực
Sau đây là hai trong số nhiều loại giới hạn vô cực khác nhau:
+) Cho hàm số \(y = f(x)\) xác định trên khoảng \((a; +∞)\), \(\underset{x\rightarrow+\infty }{\lim} f(x) = -∞\) khi và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n> a\), \(x_n\rightarrow +\infty\) thì ta có \(\lim f(x_n) = -∞\)
+) Cho khoảng \(K\) chứa điểm \(x_0\) và hàm số \(y = f(x)\) xác định trên \(K\) hoặc trên \(K\backslash {\{x_0}\rm{\} }.\)\(\underset{x\rightarrow x_{_{0}}}{\lim} f(x) = +∞\) và chỉ khi với dãy số \((x_n)\) bất kì, \(x_n ∈K\backslash {\rm{\{ }}{x_0}{\rm{\} }}\) và \(x_n\rightarrow x_0\) thì ta có: \(\lim f(x_n) = +∞\).
Nhận xét: \(f(x)\) có giới hạn \(+∞ \) khi và chỉ khi \(-f(x)\) có giới hạn \(-∞\).
3. Các giới hạn đặc biệt
a) \(\underset{x\rightarrow x_{_{0}}}{\lim} x = x_0\);
b) \(\underset{x\rightarrow x_{_{0}}}{\lim}c = c\);
c) \(\underset{x\rightarrow \pm \infty }{\lim} c = c\);
d) \(\underset{x\rightarrow \pm \infty }{\lim}\) \(\frac{c}{x} = 0\) (\(c\) là hằng số);
e) \(\underset{x\rightarrow+\infty }{\lim} x^k= +∞\), với \(k\) nguyên dương;
f) \(\underset{x\rightarrow-\infty }{lim} x^k= -∞\), nếu \(k\) là số lẻ;
g) \(\underset{x\rightarrow-\infty }{lim}x^k = +∞\) , nếu \(k\) là số chẵn.
4. Định lí về giới hạn hữu hạn
Định lí 1.
a) Nếu \(\underset{x\rightarrow x_{_{0}}}{lim} = L\) và \(\underset{x\rightarrow x_{_{0}}}{lim}\) \(g(x) = M\) thì:
\(\underset{x\rightarrow x_{_{0}}}{lim}
\(\underset{x\rightarrow x_{_{0}}}{lim} \(\underset{x\rightarrow x_{_{0}}}{lim} \(\underset{x\rightarrow x_{_{0}}}{lim}\) \(\frac{f(x)}{g(x)}\)= \(\frac{L}{M}\) (nếu \(M ≠ 0\)). b) Nếu \(f(x) ≥ 0\) và \(\underset{x\rightarrow x_{_{0}}}{\lim} f(x) = L\), thì \(L ≥ 0\) và \(\underset{x\rightarrow x_{_{0}}}{\lim}\sqrt {f(x)} = \sqrt L\) Chú ý: Định lí 1 vẫn đúng khi \(x_n\rightarrow +\infty\) hoặc \(x_n\rightarrow -\infty\). Định lí 2. \(\underset{x\rightarrow x_{_{0}}}{lim} f(x) = L\) khi và chỉ khi \(\underset{x\rightarrow x_{_{0}}^{+}}{lim}\) f(x) = \(\underset{x\rightarrow x_{_{0}}^{-}}{\lim} f(x) = L\). 5. Quy tắc về giới hạn vô cực a) Quy tắc giới hạn của tích \(f(x).g(x)\) + Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \pm \infty \) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = L \ne 0\) thì \(\mathop {\lim }\limits_{x \to {x_0}} \left< {f\left( x \right).g\left( x \right)} \right>\) được cho trong bảng sau:
Xem thêm: Trường Thpt Thực Hành Sư Phạm, Trường Phổ Thông Thực Hành Sư Phạm
b) Quy tắc tìm giới hạn của thương \(\dfrac{f(x)}{g(x)}\)
+ Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L \ne 0\) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = 0\) và \(g\left( x \right) > 0\) hoặc \(g\left( x \right)