Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(2a\) và thể tích bằng \({a^3}\). Tính chiều cao \(h\) của hình chóp đã cho.

Bạn đang xem: Cho hình chóp sabcd có đáy là tam giác đều cạnh a


Chiều cao của hình chóp \(h = \dfrac{{3V}}{S}\) với \(V\) là thể tích khối chóp, \(S\) là diện tích đáy.


Do đáy là tam giác đều nên \({S_{\Delta ABC}} = \dfrac{{{{\left( {2a} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \)

Mà \(V = \dfrac{1}{3}{S_{\Delta ABC}}.h \) \(\Rightarrow h = \dfrac{{3V}}{{{S_{\Delta ABC}}}} = \dfrac{{3{a^3}}}{{{a^2}\sqrt 3 }} = \sqrt 3 a\)


*
*
*
*
*
*
*
*

Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\), \(SA \bot \left( {ABC} \right)\) và \(SA = a\). Tính thể tích khối chóp \(S.ABC\).


Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(C,\)\(AB = a\sqrt 5 ,\)\(AC = a.\) Cạnh bên \(SA = 3a\) và vuông góc với mặt phẳng đáy. Thể tích của khối chóp \(S.ABC\) bằng


Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(2a\) và thể tích bằng \({a^3}\). Tính chiều cao \(h\) của hình chóp đã cho.


Cho tứ diện \(ABCD\) có thể tích bằng $12$ và \(G\) là trọng tâm tam giác \(BCD\). Tính thể tích \(V\) của khối chóp \(A.GBC\).


Cho tứ diện \(ABCD\) có \(AD = 14,BC = 6\). Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AC,BD\) và \(MN = 8\). Gọi \(\alpha \) là góc giữa hai đường thẳng \(BC\) và \(MN\). Tính \(\sin \alpha \).


Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, \(SA \bot (ABCD)\) và \(SA = a\sqrt 6 \). Thể tích của khối chóp $S.ABCD$ bằng


Cho hình chóp $S.ABCD$ có đáy là hình vuông cạnh $a$, \(SD = \dfrac{{a\sqrt {17} }}{2}\), hình chiếu vuông góc $H$ của $S$ lên mặt $\left( {ABCD} \right)$ là trung điểm của đoạn $AB$. Tính chiều cao của khối chóp $H.SBD$ theo $a$.


Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thoi tâm $O$, $AB = a$, $\widehat {BAD} = 60^\circ $, $SO \bot \left( {ABCD} \right)$ và mặt phẳng $\left( {SCD} \right)$ tạo với mặt đáy một góc $60^\circ $. Tính thể tích khối chóp $S.ABCD$


Cho hình chóp tứ giác \(S.ABCD\). Gọi \(V\) là thể tích khối chóp \(S.ABCD\). Lấy điểm \(A"\) trên cạnh \(SA\)sao cho \(SA = 4SA"\). Mặt phẳng qua \(A"\) và song song với đáy của hình chóp cắt các cạnh \(SB\), \(SC\), \(SD\) lần lượt tại các điểm \(B"\), \(C"\), \(D"\). Thể tích khối chóp \(S.A"B"C"D"\)bằng:


Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông. Nếu khối chóp có chiều cao bằng \(a\sqrt 3 \) và thể tích là \(3{a^3}\sqrt 3 \) thì cạnh đáy có độ dài là:


Cho một cây nến hình lăng trụ lục giác đều có chiều cao và độ dài cạnh đáy lần lượt là \(15{\rm{cm}}\) và \(5{\rm{cm}}\). Người ta xếp cây nến trên vào trong một hộp có dạng hình hộp chữ nhật sao cho cây nến nằm khít trong hộp ( có đáy tiếp xúc như hình vẽ). Thể tích của chiếc hộp đó bằng.


*

Cho lăng trụ tam giác \(ABC.A"B"C"\) có đáy \(ABC\) là đều cạnh \(AB = 2a\sqrt 2 \). Biết \(AC" = 8a\) và tạo với mặt đáy một góc \({45^0}\). Thể tích khối đa diện \(ABCC"B"\) bằng


Cho hình lăng trụ \(ABC.A"B"C"\) có thể tích bằng \(V\). Các điểm \(M\), \(N\), \(P\) lần lượt thuộc các cạnh $AA"$, $BB"$, $CC"$ sao cho $\dfrac{{AM}}{{AA"}} = \dfrac{1}{2}$, $\dfrac{{BN}}{{BB"}} = \dfrac{{CP}}{{CC"}} = \dfrac{2}{3}$. Thể tích khối đa diện \(ABC.MNP\) bằng


*

Cho tứ diện đều \(ABCD\) có cạnh bằng $3.$ Gọi \(M,\,N\) lần lượt là trung điểm các cạnh \(AD,\,BD.\) Lấy điểm không đổi \(P\) trên cạnh \(AB\) (khác \(A,\,B\)). Thể tích khối chóp \(P.MNC\) bằng


*

Cho khối chóp \(S.ABCD\) có thể tích bằng \(16\). Gọi \(M\), \(N\), \(P\), \(Q\) lần lượt là trung điểm của \(SA\), \(SB\), \(SC\), \(SD\). Tính thể tích khối chóp \(S.MNPQ\).


Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân, \(AB = AC = a\), \(SC \bot \left( {ABC} \right)\) và \(SC = a\). Mặt phẳng qua \(C\), vuông góc với \(SB\) cắt \(SA,SB\) lần lượt tại \(E\) và \(F\). Tính thể tích khối chóp \(S.CEF\).

Xem thêm: Cách Tìm Giá Trị Lớn Nhất Nhỏ Nhất Của Hàm Số, Giá Trị Lớn Nhất Và Nhỏ Nhất Của Hàm Số


Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh $a$, hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với đáy, biết \(SC = a\sqrt 3 \). Gọi \(M,\)\(N,\)\(P,\)\(Q\) lần lượt là trung điểm của \(SB,\)\(SD,\)\(CD,\)\(BC\). Tính thể tích của khối chóp \(A.MNPQ\).


Một lăng trụ đứng tam giác có các cạnh đáy là $11\,cm$, $12\,cm$, $13\,cm$ và diện tích xung quanh bằng $144\,c{m^2}$. Thể tích của khối lăng trụ đó là:


Cho khối lăng trụ tam giác đều ABC.A′B′C′. Các mặt phẳng (ABC′) và (A′B′C) chia khối lăng trụ đã cho thành 4 khối đa diện. Kí hiệu H1, H2 lần lượt là khối có thể tích lớn nhất và nhỏ nhất trong bốn khối trên. Giá trị của \(\dfrac{{{V_{\left( {{H_1}} \right)}}}}{{{V_{\left( {{H_2}} \right)}}}}\) bằng