Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânTiếng anh thí điểmĐạo đứcTự nhiên và xã hộiKhoa họcLịch sử và Địa lýTiếng việtKhoa học tự nhiênHoạt động trải nghiệm, hướng nghiệpHoạt động trải nghiệm sáng tạoÂm nhạcMỹ thuật
*

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, BC, CD. Chứng minh rằng AM vuông góc với BP và tính thể tích của khối tứ diện CMNP


*

D H S M B N C K A P

Gọi H là trung điểm của AD. Do tam giác SAD là tam giác đều nên SH vuông góc với AD

Do mặt phẳng (SAD) vuông góc với mặt phẳng (ABCD) nên SH vuông góc với BP(1)

Xét hình vuông ABCD ta có :

\(\Delta CDH=\Delta BCP\Rightarrow CH\perp BP\) (2)

Từ (1) và (2) ta suy ra \(BP\perp\left(SHC\right)\)

Vì \(\begin{cases}MN||SC\\AN||CH\end{cases}\) \(\Rightarrow\left(AMN\right)||\left(SHC\right)\)

\(\Rightarrow BP\perp\left(AMN\right)\Rightarrow BP\perp AM\)

Kẻ vuông góc với mặt phẳng (ABCD), K thuộc vào mặt phẳng (ABCD), ta có :

\(V_{CMNP}=\frac{1}{3}MK.S_{CNP}\)

Vì \(MK=\frac{1}{2}SH=\frac{a\sqrt{3}}{4};S_{CNP}=\frac{1}{2}CN.CP=\frac{a^2}{8}\)

\(\Rightarrow V_{CMNP}=\frac{\sqrt{3}a^2}{96}\)


Đúng 0
Bình luận (0)
Các câu hỏi tương tự
*

Cho hình chóp đều S.ABC, có đáy là tam giác đều cạnh bằng a. gọi M, N lần lượt là trung điểm của các cạnh SB, SC. Biết mặt phẳng (AMN) vuông góc với mặt phẳng (SBC). Tính thể tích của khối chóp A.BCNM.

Bạn đang xem: Cho hình chóp sabcd có đáy abcd là hình vuông cạnh a


Lớp 12 Toán Chương 1: KHỐI ĐA DIỆN
2
0
*

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, \(SA=a,SB=a\sqrt{3}\) và mặt phẳng (SAB) vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC

Tính theo a thể tích của khối chóp S.BMDN và tính cosin của góc giữa 2 đường thẳng SM và DN


Lớp 12 Toán Chương 1: KHỐI ĐA DIỆN
1
0

Cho hình chóp S.ABCD có đáy \ABCD là hình vuông cạnh a, cạnh SA vuông góc với đáy và SA = a. Gọi M, N lần lượt là trung điểm của các cạnh AD và SC.

1. Tính thể tích khối tứ diện MNBD.

2. Tính khoảng cách từ điểm D đến mặt phẳng (MNB).


Lớp 12 Toán Chương 1: KHỐI ĐA DIỆN
1
0

Giúp mình với:Hình chóp tứ giác SABCD có đáy hình vuông cạnh a. SA vuông với đáy, góc giữa mặt phẳng (SBD) và đáy =60 độ.Gọi M,N lần lượt là trung điểm SB,SC,Tính thể tích SADNM? 


Lớp 12 Toán Chương 1: KHỐI ĐA DIỆN
1
0

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC=60°. Cạnh bên SA vuông góc với mặt đáy và cạnh bên SC tạo với mặt đáy một góc 60°. Gọi I là trung điểm BC, H là hình chiếu vuông góc của A lên SI. Tính thể tích khối chóp S.ABCD và khoảng cách từ điểm H đến (SCD) theo a.

Xem thêm: Trường Thcs Võ Bẩm Đề Kiểm Tra Vật Lý 6 Học Kì 1 45 Phút (1 Tiết)


Lớp 12 Toán Chương 1: KHỐI ĐA DIỆN
1
0

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA=a; hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) là điểm H thuộc đoạn AC, \(AH=\frac{AC}{4}\). Gọi CM là đường cao của tam giác SAC.

Chứng minh M là trung điểm của SA và tính thể tích của khối tứ diệm SMBC theo a


Lớp 12 Toán Chương 1: KHỐI ĐA DIỆN
1
0

Cho hình chóp S.ABCcó đáy ABC là tam giác đều, cạnh 4a. Tam giác SAB nằm trong mặt phẳng vuông góc với đáy, biết rằng hình chiếu của S lên mặt phẳng đáy là điểm H nằm trên cạnh AB và AH =a. Góc hợp bởi SC với mặt phẳng đáy là 60 độ. Tính thể tích khối chóp S.ABC


Lớp 12 Toán Chương 1: KHỐI ĐA DIỆN
0
0

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt SAB là tam giác đều và nằm trong mặt phẳng vuông hóc với mặt phẳng đáy. Tính thể tích khối chóp S.ABCD và tính khoảng cách từ A đến mặt phẳng (SCD) theo a


Lớp 12 Toán Chương 1: KHỐI ĐA DIỆN
2
0

Cho chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB=AD=2a. CD=a. Góc giữa 2 mặt phẳng (SBC) và (ABCD) bằng 60 độ. Gọi I là trung điểm của cạnh AD. Biết 2 mặt phẳng ( SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích của khối chóp S.ABCD theo a


Lớp 12 Toán Chương 1: KHỐI ĐA DIỆN
1
0

Khoá học trên OLM (olm.vn)


Khoá học trên OLM (olm.vn)