Hướng dẫn cách khảo sát và vẽ đồ thị hàm số bậc ba chi tiết
Cách khảo sát và vẽ các dạng đồ thị hàm số trong đó có cách khảo sát và vẽ đồ thị hàm số bậc ba là phần kiến thức trọng tâm của chương trình Toán 10,11 và 12 có nhiều trong các đề thi quan trọng. Để giúp các em nắm rõ hơn phần kiến thức quan trọng này, THPT Sóc Trăng đã chia sẻ bài viết sau đây. Bạn theo dõi nhé !
I. HÀM SỐ BẬC BA LÀ GÌ ?
Trong đại số, một hàm số bậc ba là một hàm số có dạng:
Bạn đang xem: Hướng dẫn cách khảo sát và vẽ đồ thị hàm số bậc ba chi tiết
f(x)=ax3+bx2+cx+d (trong đó a#0)
Phương trình f(x) = 0 là một phương trình bậc ba có dạng: ax3+bx2+cx+d =0Các giá trị x thỏa mãn phương trình này được gọi là các nghiệm số của đa thức f(x).
Bạn đang xem: Các bước vẽ đồ thị hàm số
II. CÁCH KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ BẬC BA
1. Cách khảo sát sự biến thiên của đồ thị hàm số bậc ba
Để khảo sát đồ thị hàm số bậc ba y=ax3+bx2+cx+d với a#0 ta thực hiện các bước sau:
+ Bước 1. Tập xác định: D=R.+ Bước 2. Đạo hàm: y′=3ax2+2bx+c, Δ′=b2–3ac.Δ′>0: Hàm số có 2 cực trị.Δ′≤0: Hàm số luôn tăng hoặc luôn giảm trên R.+ Bước 3. Đạo hàm cấp 2: y”=6ax+2b, y”=0⇔x=–b3a.x=–b3a là hoành độ điểm uốn, đồ thị nhận điểm uốn làm tâm đối xứng.+ Bước 4. Giới hạn:Nếu a>0 thì: limx→–∞y=–∞, limx→+∞y=+∞.Nếu a+ Bước 5. Bảng biến thiên và đồ thị:Trường hợp a>0:+ Δ′=b2–3ac>0: Hàm số có 2 cực trị.




























y=x3-3x+1y=-x3+3×2+1y=-x3+x2+3y=x3-3×2+3x+1
Hướng dẫn:
Dựa vào dạng đồ thị, ta có a>0. Hiển nhiên B, C bị loại.
Hàm số này không có cực trị, nên loại đáp án A.
Xem thêm: Kèo Bóng Đá Hôm Nay, Tỷ Số Cá Cược Bóng Đá, Keo Bong Da, Ty Le Ca Cuoc Hôm Nay
Vậy đáp án D đúng.
Vậy là các bạn vừa được theo dõi cách khảo sát và vẽ đồ thị hàm số bậc ba chi tiết. Hi vọng, bài viết đã mang đến cho bạn thêm nhiều nguồn tư liệu hữu ích. Cách vẽ đồ thị hàm số bậc hai cũng đã được THPT Sóc Trăng chia sẻ rất chi tiết. Các bạn tìm hiểu thêm nhé !