Chuyên đề Toán học lớp 8: Phương trình tích được VnDoc sưu tầm và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán học lớp 8 hiệu quả hơn. Mời các bạn tham khảo.

Bạn đang xem: Các bài toán giải phương trình lớp 8 có đáp án

Liên quan: các bài toán giải phương trình lớp 8 có đáp án

Bài tập Toán lớp 8: Phương trình tích

A. Lý thuyết

1. Phương trình tích và cách giải

Phương trình tích có dạng A(x).B(x) = 0

Cách giải phương trình tích A(x).B(x) = 0 ⇔

*

Cách bước giải phương trình tích

Bước 1: Đưa phương trình đã cho về dạng tổng quát A(x).B(x) = 0 bằng cách:

Chuyển tất cả các hạng tử của phương trình về vế trái. Khi đó vế phải bằng 0.

Phân tích đa thức ở vế phải thành nhân tử

Bước 2: Giải phương trình và kết luận

Ví dụ 1: Giải phương trình (x + 1)(x + 4) = (2 – x)(2 + x)

Hướng dẫn:

Ta có: (x + 1)(x + 4) = (2 – x )( 2 + x ) ⇔ x2 + 5x + 4 = 4 – x2

⇔ 2×2 + 5x = 0 ⇔ x(2x + 5) = 0

Vậy phương trình đã cho có tập nghiệm là S = {- 5/2; 0}

Ví dụ 2: Giải phương trình x3 – x2 = 1 – x

Hướng dẫn:

Ta có: x3 – x2 = 1 – x ⇔ x2(x – 1) = – (x – 1)

⇔ x2(x – 1) + (x – 1) = 0 ⇔ (x – 1)(x2 + 1) = 0

( 1 ) ⇔ x – 1 = 0 ⇔ x = 1.

( 2 ) ⇔ x2 + 1 = 0 (Vô nghiệm vì x2 ≥ 0 ⇒ x2 + 1 ≥ 1)

Vậy phương trình đã cho có tập nghiệm là S = {1}.

B. Trắc nghiệm & Tự luận

I. Bài tập trắc nghiệm

Bài 1: Nghiệm của phương trình (x + 2)(x – 3) = 0 là?

A. x = – 2.

B. x = 3.

C. x = – 2; x = 3 .

D. x = 2.

Bài 2: Tập nghiệm của phương trình (2x + 1)(2 – 3x) = 0 là?

A. S = {- 1/2}.

B. S = {- 1/2; 3/2}

C. S = {- 1/2; 2/3}.

D. S = {3/2}.

Bài 3: Nghiệm của phương trình 2x(x + 1) = x2 – 1 là?

A. x = – 1.

B. x = ± 1.

C. x = 1.

D. x = 0.

Bài 4: Giá trị của m để phương trình (x + 2)(x – m) = 4 có nghiệm x = 2 là?

A. m = 1.

B. m = ± 1.

C. m = 0.

D. m = 2.

Bài 5: Giá trị của m để phương trình x3 – x2 = x + m có nghiệm x = 0 là?

A. m = 1.

B. m = – 1.

C. m = 0.

D. m = ± 1.

II. Bài tập tự luận

Bài 1: Giải các phương trình sau:

a) (5x – 4)(4x + 6) = 0

b) (x – 5)(3 – 2x)(3x + 4) = 0

c) (2x + 1)(x2 + 2) = 0

d) (x – 2)(3x + 5) = (2x – 4)(x + 1)

Hướng dẫn:

a) Ta có: (5x – 4)(4x + 6) = 0

Vậy phương trình đã cho có tập nghiệm là S = {- 3/2; 4/5}.

b) Ta có: (x – 5)(3 – 2x)(3x + 4) = 0

Vậy phương trình đã cho có tập nghiệm là S = {- 4/3; 3/2; 5}.

c) Ta có: (2x + 1)(x2 + 2) = 0

Giải (1) ⇔ 2x + 1 = 0 ⇔ 2x = – 1 ⇔ x = – 1/2.

Ta có: x2 ≥ 0 ⇒ x2 + 2 ≥ 2 ∀ x ∈ R

⇒ Phương trình (2) vô nghiệm.

Vậy phương trình đã cho có tập nghiệm S = {- 1/2}.

d) Ta có: (x – 2)(3x + 5) = (2x – 4 )( x + 1)

⇔ (x – 2)(3x + 5) – 2(x – 2)(x + 1) = 0

⇔ (x – 2)<(3x + 5) – 2(x + 1)> = 0

⇔ (x – 2)(x + 3) = 0

Vậy phương trình đã cho có tập nghiệm là S = {- 3; 2}.

Bài 2: Giải các phương trình sau:

a) (2x + 7)2 = 9(x + 2 )2

b) (x2 – 1)(x + 2)(x – 3) = (x – 1)(x2 – 4)(x + 5)

c) (5×2 – 2x + 10)2 = (x2 + 10x – 8)2

d) (x2 + x)2 + 4(x2 + x) – 12 = 0

Hướng dẫn:

a) Ta có: (2x + 7)2 = 9(x + 2)2

⇔ (2x + 7)2 – 9(x + 2)2 = 0

⇔ <(2x + 7) + 3(x + 2)><(2x + 7) – 3(x + 2)> = 0

⇔ (5x + 13)(1 – x) = 0

Vậy phương trình đã cho có tập nghiệm là S = {- 13/5; 1}.

b) Ta có: (x2 – 1)(x + 2)(x – 3) = (x – 1)(x2 – 4)(x + 5)

⇔ (x2 – 1)(x + 2)( x – 3) – (x – 1)(x2 – 4 )(x + 5) = 0

⇔ (x – 1)(x + 1)(x + 2)(x – 3) – (x – 1)(x – 2)(x + 2)(x + 5) = 0

⇔ (x – 1)(x + 2)<(x + 1)(x – 3) – (x – 2)(x + 5)> = 0

⇔ (x – 1)(x + 2)<(x2 – 2x – 3) – (x2 + 3x – 10)> = 0

⇔ (x – 1)(x + 2)(7 – 5x) = 0

Vậy phương trình có tập nghiệm là S = { – 2; 1; 7/5 }.

c) Ta có: (5×2 – 2x + 10)2 = (3×2 + 10x – 8)2

⇔ (5×2 – 2x + 10)2 – (3×2 + 10x – 8)2 = 0

⇔ <(5×2 – 2x + 10) – (3×2 + 10x – 8)><(5×2 – 2x + 10) + (3×2 + 10x – 8)> = 0

⇔ (2×2 – 12x + 18)(8×2 + 8x + 2) = 0

⇔ 4(x2 – 6x + 9)(4×2 + 4x + 1) = 0

⇔ 4(x – 3)2(2x + 1)2 = 0

Vậy phương trình đã cho có tập nghiệm S = {- 1/2; 3}.

d) Ta có: (x2 + x)2 + 4(x2 + x) – 12 = 0

Đặt t = x2 + x, khi đó phương trình trở thành:

t2 + 4t – 12 = 0 ⇔ (t + 6)(t – 2) = 0

+ Với t = – 6, ta có: x2 + x = – 6 ⇔ x2 + x + 6 = 0 ⇔ (x + 1/2)2 + 23/4 = 0

Mà (x + 1/2)2 + 23/4 ≥ 23/4 ∀ x ∈ R ⇒ Phương trình đó vô nghiệm.

Xem thêm: Nghệ Đen Là Gì? Có Tác Dụng Của Nghệ Đen Hay Nghệ Vàng Tốt Hơn?

+ Với t = 2, ta có x2 + x = 2 ⇔ x2 + x – 2 = 0

⇔ (x + 2)(x – 1) = 0 ⇔

Vậy phương trình có tập nghiệm là S = {- 2;1}.

Trên đây VnDoc đã giới thiệu tới các bạn lý thuyết môn Toán học 8: Phương trình tích. Để có kết quả cao hơn trong học tập, VnDoc xin giới thiệu tới các bạn học sinh tài liệu Chuyên đề Toán học 8, Giải bài tập Toán lớp 8, Giải VBT Toán lớp 8 mà VnDoc tổng hợp và giới thiệu tới các bạn đọc