Bài tập tìm tiệm cận của đồ thị hàm số không chứa tham số có đáp án 

Phương pháp giải tổng quát bài tập tìm tiệm cận không chứa m

Để tìm tiệm cận của đồ thị hàm số $y=f\left( x \right)$ ta thực hiện các bước sau:

▪ Bước 1: Tìm miền xác định (tập xác định) của hàm số $y=f\left( x \right)$

▪ Bước 2: Tìm giới hạn của $f\left( x \right)$ khi x tiến đến biên của miền xác định.

Bạn đang xem: Bài tập về đường tiệm cận của hàm số

▪ Bước 3: Từ các giới hạn và định nghĩa tiệm cận suy ra phương trình các đường tiệm cận.

Đặc biệt: Để tìm các đường tiệm cận của đồ thị hàm số $y=\frac{f\left( x \right)}{g\left( x \right)}$ ta có thể làm như sau:

Bước 1: Tìm tập xác định D.

Bước 2:

+) Tìm tiệm cận ngang: Ta tính các giới hạn: $\underset{x\to +\infty }{\mathop{\lim }}\,y;\underset{x\to -\infty }{\mathop{\lim }}\,y$ và kết luận tiệm cận ngang

+) Tìm tiệm cận đứng: Sử dụng phương pháp nhân liên hợp hoặc phân tính nhân tử để đơn giản biểu thức $\frac{f\left( x \right)}{g\left( x \right)}$ về dạng tối giản nhất có thể từ đó kết luận về tiệm cận đứng.

Chú ý:

- Nếu bậc của $f\left( x \right)$ nhỏ hơn hoặc bằng bậc của $g\left( x \right)$ thì đồ thị hàm số có tiệm cận ngang.

- Nếu bậc của $f\left( x \right)$ lớn hơn bậc của thì $g\left( x \right)$ đồ thị hàm số không có tiệm cận ngang.

Bài tập về tiệm cận của đồ thị hàm số có đáp án

Bài tập 1: Tìm tiệm cận đứng và tiệm cận ngang của các đồ thị hàm số sau:

a) $y=\frac{2-x}{1-{{x}^{2}}}\,\,\left( C \right).$ b) $y=\frac{2{{x}^{2}}+5x+1}{{{x}^{2}}-5x+4}\,\,\left( C \right).$

Lời giải chi tiết

a) TXĐ: $D=\mathbb{R}\backslash \left\{ -1;1 \right\}$. Ta có: $\underset{x\to \pm \infty }{\mathop{\lim }}\,y=\underset{x\to \pm \infty }{\mathop{\lim }}\,\frac{2-x}{1-{{x}^{2}}}=\underset{x\to \pm \infty }{\mathop{\lim }}\,\frac{\frac{2}{{{x}^{2}}}-\frac{1}{{{x}^{2}}}}{\frac{1}{{{x}^{2}}-1}}=0\Rightarrow y=0$ là tiệm cận ngang của đồ thị hàm số.

Mặt khác $\underset{x\to 1}{\mathop{\lim }}\,y=\infty $ và $\underset{x\to \left( -1 \right)}{\mathop{\lim }}\,y=\infty $ nên $x=1$ và $x=-1$ là các đường tiệm cận của đồ thị hàm số.

b) TXĐ: $D=\mathbb{R}\backslash \left\{ 1;4 \right\}$.

Ta có: $\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,y=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\frac{2{{x}^{2}}+5x+1}{\left( x-1 \right)\left( x-4 \right)}=-\infty $ (hoặc $\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,y=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\frac{2{{x}^{2}}+5x+1}{\left( x-1 \right)\left( x-4 \right)}=+\infty $) nên đường thẳng $x=1$ là tiệm cận đứng của (C).

Tương tự đường thẳng $x=4$ cũng là tiệm cận đứng của đồ thị hàm số đã cho.

Lại có: $\underset{x\to \pm \infty }{\mathop{\lim }}\,y=\underset{x\to \pm \infty }{\mathop{\lim }}\,\frac{2{{x}^{2}}+5x+1}{{{x}^{2}}-5x+4}=\underset{x\to \pm \infty }{\mathop{\lim }}\,\frac{2+\frac{5}{x}+\frac{1}{{{x}^{2}}}}{1-\frac{5}{x}+\frac{4}{{{x}^{2}}}}=2$ nên đường thẳng $y=2$ là tiệm cận ngang của đồ thị hàm số đã cho.

Bài tập 2: Tìm tiệm cận đứng và tiệm cận ngang của các đồ thị hàm số sau

a) $y=\frac{\sqrt{x+3}-2x}{{{x}^{2}}-1}.$ b) $y=\frac{{{x}^{2}}-4x+3}{\sqrt{{{x}^{2}}+7}-4}.$

Lời giải chi tiết

a) TXĐ: $D=\left< -3;+\infty \right)\backslash \left\{ \pm 1 \right\}.$

Ta có: $\underset{x\to +\infty }{\mathop{\lim }}\,y=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\sqrt{x+3}-2x}{{{x}^{2}}-1}=0\Rightarrow y=0$ là tiệm cận ngang của đồ thị hàm số.

Mặt khác $\underset{x\to 1}{\mathop{\lim }}\,y=\underset{x\to 1}{\mathop{\lim }}\,\frac{\sqrt{x+3}-2x}{{{x}^{2}}-1}=\underset{x\to 1}{\mathop{\lim }}\,\frac{\frac{x+3-4{{x}^{2}}}{\sqrt{x+3}+2x}}{\left( x-1 \right)\left( x+1 \right)}=\underset{x\to 1}{\mathop{\lim }}\,\frac{\frac{\left( 1-x \right)\left( 3+4x \right)}{\sqrt{x+3}+2x}}{\left( x-1 \right)\left( x+1 \right)}$

$=\underset{x\to 1}{\mathop{\lim }}\,-\frac{3+4x}{\left( x+1 \right)\left( \sqrt{x+3}+2x \right)}=-\frac{7}{8}\Rightarrow x=1$ không là tiệm cận đứng của đồ thị hàm số.

Ta có: $\underset{x\to \left( -1 \right)}{\mathop{\lim }}\,y=\underset{x\to \left( -1 \right)}{\mathop{\lim }}\,\frac{\sqrt{x+3}-2x}{{{x}^{2}}-1}=\infty \Rightarrow x=-1$ là tiệm cận đứng của đồ thị hàm số.

b) TXĐ: $D=\mathbb{R}.$ Ta có: $\underset{x\to \pm \infty }{\mathop{\lim }}\,y=\underset{x\to \pm \infty }{\mathop{\lim }}\,\frac{{{x}^{2}}-4x+3}{\sqrt{{{x}^{2}}+7}-4}=+\infty \Rightarrow $ Đồ thị hàm số không có tiệm cận ngang.

Lại có: $y=\frac{\left( x-1 \right)\left( x-3 \right)}{\frac{{{x}^{2}}+7-16}{\sqrt{{{x}^{2}}+7}+4}}=\frac{\left( \sqrt{{{x}^{2}}+7}+4 \right)\left( x-1 \right)\left( x-3 \right)}{\left( x-3 \right)\left( x+3 \right)}=\frac{\left( \sqrt{{{x}^{2}}+7}+4 \right)\left( x-1 \right)}{x+3}$

Khi đó đồ thị hàm số có tiệm cận đứng là $x=-3.$

Bài tập 3: Cho hàm số $y=f\left( x \right)$ có $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=-\infty $ và $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=-\infty $. Khẳng định nào sau đây là khẳng định đúng?

A. Đồ thị hàm số đã cho không có tiệm cận đứng.

B. Đồ thị hàm số đã cho có đúng một tiệm cận đứng.

C. Đồ thị hàm số đã cho có hai tiệm cận đứng là các đường thẳng $y=0$ và $y=2.$

D. Đồ thị hàm số đã cho có hai tiệm cận đứng là các đường thẳng $x=0$ và $x=2.$

Lời giải chi tiết

Ta có $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=-\infty \Rightarrow $ đồ thị hàm số đã cho có TCĐ $x=0$

Lại có $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=-\infty \Rightarrow $ đồ thị hàm số đã cho có TCĐ $x=2$. Chọn D.

Bài tập 4: Tìm đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số $y=\frac{2x-1}{x+1}.$

A. $x=-1,\,\,y=\frac{1}{2}.$ B. $x=-1,\,\,y=2.$ C. $x=1,\,\,y=-2.$ D. $x=\frac{1}{2},\,\,y=-1.$

Lời giải chi tiết

TXĐ: $D=\mathbb{R}\backslash \left\{ -1 \right\}$.

Ta có: $\underset{x\to \left( -1 \right)}{\mathop{\lim }}\,y=\infty \Rightarrow x=-1$ là tiệm cận đứng của đồ thị hàm số.

Mặt khác $\underset{x\to \infty }{\mathop{\lim }}\,y=\underset{x\to \infty }{\mathop{\lim }}\,\frac{2x-1}{x+1}=2\Rightarrow y=2$ là tiệm cận ngang của đồ thị hàm số. Chọn B.

Bài tập 5: Trong các hàm số được nêu trong các phương án A, B, C, D đồ thị hàm số nào nhận đường thẳng $x=2$ và $y=1$ là các đường tiệm cận?

A. $y=\frac{2x+2}{x-1}.$ B. $y=\frac{x-2}{x-1}.$ C. $y=\frac{1}{{{x}^{2}}-x-2}.$ D. $y=\frac{x+1}{x-2}.$

Lời giải chi tiết

Đồ thị hàm số $y=\frac{ax+b}{cx+d}$ với $ad-bc\ne 0$ nhận $x=-\frac{d}{c}$ là tiệm cận đứng và $y=\frac{a}{c}$ là tiệm cận ngang. Chọn D.

Bài tập 6: Cho hàm số $y=\frac{2{{x}^{2}}-3x+2}{{{x}^{2}}-2x-3}$. Khẳng định nào sau đây sai?

A. Đồ thị hàm số có tiệm cận ngang là $y=\frac{1}{2}$.

B. Đồ thị hàm số có tiệm cận ngang là $y=2$.

C. Đồ thị hàm số có ba đường tiệm cận.

D. Đồ thị hàm số có tiệm cận đứng là $x=-1;\,\,x=3.$

Lời giải chi tiết

TXĐ: $D=\mathbb{R}\backslash \left\{ -1;3 \right\}.$

Ta có $\underset{x\to \infty }{\mathop{\lim }}\,y=\underset{x\to \infty }{\mathop{\lim }}\,\frac{2{{x}^{2}}-3x+2}{{{x}^{2}}-2x-3}=\underset{x\to \infty }{\mathop{\lim }}\,\frac{2-\frac{3}{x}+\frac{2}{{{x}^{2}}}}{1-\frac{2}{x}-\frac{3}{{{x}^{2}}}}=2\Rightarrow y=2$ là tiệm cận ngang của đồ thị hàm số.

Lại có: $\underset{x\to \left( -1 \right)}{\mathop{\lim }}\,y=\infty ,\,\,\underset{x\to \left( 3 \right)}{\mathop{\lim }}\,y=\infty $ do đó $x=-1;\,\,x=3$ là tiệm cận đứng của đồ thị hàm số. Chọn A.

Bài tập 7: Đồ thị nào sau đây không có tiệm cận ngang?

A. $y=\frac{{{x}^{2}}+1}{x-1}.$ B. $y=\frac{x-1}{{{x}^{2}}+1}.$ C. $y=\frac{x-1}{x+2}.$ D. $y=\frac{1}{x+1}.$

Lời giải chi tiết

Ta có $\underset{x\to \infty }{\mathop{\lim }}\,y=\underset{x\to \infty }{\mathop{\lim }}\,\frac{{{x}^{2}}+1}{x-1}=\underset{x\to \infty }{\mathop{\lim }}\,\frac{x+\frac{1}{x}}{1-\frac{1}{x}}=\underset{x\to \infty }{\mathop{\lim }}\,x=\infty \Rightarrow $ đồ thị hàm số không có tiệm cận ngang. Chọn A.

Bài tập 8: <Đề thi THPT QG 2017> Tìm số tiệm cận đứng của đồ thị hàm số $y=\frac{{{x}^{2}}-3x-4}{{{x}^{2}}-16}$.

A. 2. B. 3. C. 0. D. 1.

Lời giải chi tiết

TXĐ: $D=\mathbb{R}\backslash \left\{ \pm 4 \right\}$. Khi đó: $y=\frac{{{x}^{2}}-3x+4}{{{x}^{2}}-16}=\frac{\left( x+1 \right)\left( x-4 \right)}{\left( x-4 \right)\left( x+4 \right)}=\frac{x+1}{x+4}.$

Suy ra đồ thị hàm số có một đường tiệm cận đứng là $x=-4.$ Chọn D.

Bài tập 9: <Đề thi THPT QG 2017> Tìm số tiệm cận của đồ thị hàm số $y=\frac{{{x}^{2}}-5x+4}{{{x}^{2}}-1}.$

A. 2. B. 3. C. 0. D. 1.

Lời giải chi tiết

TXĐ: $D=\mathbb{R}\backslash \left\{ \pm 1 \right\}$. Khi đó $y=\frac{{{x}^{2}}-5x+4}{{{x}^{2}}-1}=\frac{\left( x-4 \right)\left( x-1 \right)}{\left( x-1 \right)\left( x+1 \right)}=\frac{x-4}{x+1}\Rightarrow \left\{ \begin{align}& \underset{x\to \infty }{\mathop{\lim }}\,y=1 \\& \underset{x\to \left( -1 \right)}{\mathop{\lim }}\,y=\infty \\\end{align} \right.$

Suy ra đồ thị hàm số có tiệm cận đứng $x=-1$và tiệm cận ngang $y=1$. Chọn A.

Bài tập 10: <Đề thi THPT QG 2017> Số tiệm cận đứng của đồ thị hàm số $y=\frac{\sqrt{x+9}+3}{{{x}^{2}}+x}$ là:

A. 3. B. 2. C. 0. D. 1.

Lời giải chi tiết

TXĐ: $D=\left< -9;+\infty \right)\backslash \left\{ 0;-1 \right\}.$.

Khi đó: $y=\frac{\sqrt{x+9}+3}{{{x}^{2}}+x}=\frac{\frac{x+9-9}{\sqrt{x+9}+3}}{x\left( x+1 \right)}=\frac{1}{\left( x+1 \right)\left( \sqrt{x+9}+3 \right)}$

Suy ra $\underset{x\to \left( -1 \right)}{\mathop{\lim }}\,y=\underset{x\to \left( -1 \right)}{\mathop{\lim }}\,\frac{1}{\left( x+1 \right)\left( \sqrt{x+9}+3 \right)}\Rightarrow $ Đồ thị hàm số có một đường tiệm cận đứng là $x=-1.$

Chọn D.

Bài tập 11: Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số $y=\frac{\sqrt{{{x}^{2}}-2x+3}-x}{x-1}$.

A. $y=2.$ B. $x=1.$ C. $y=-2$ và $y=0.$ D. $y=1.$

Lời giải chi tiết

Ta có $\left\{ \begin{align}& \underset{x\to +\infty }{\mathop{\lim }}\,y=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\sqrt{{{x}^{2}}-2x+3}-x}{x-1}=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\sqrt{1-\frac{2}{x}+\frac{3}{{{x}^{2}}}}-1}{1-\frac{1}{x}}=0 \\ & \underset{x\to -\infty }{\mathop{\lim }}\,y=\underset{x\to -\infty }{\mathop{\lim }}\,\frac{\sqrt{{{x}^{2}}-2x+3}-x}{x-1}=\underset{x\to -\infty }{\mathop{\lim }}\,\frac{-\sqrt{1-\frac{2}{x}+\frac{3}{{{x}^{2}}}}-1}{1-\frac{1}{x}}=-2 \\\end{align} \right.\Rightarrow $ Đồ thị hàm số có hai đường tiệm cận ngang là

*
 và
*
Chọn C.

Bài tập 12: <Đề thi tham khảo năm 2018> Đồ thị hàm số nào dưới đây có tiệm cận đứng?

A. $y=\frac{{{x}^{2}}-3x+2}{x-1}.$ B. $y=\frac{{{x}^{2}}}{{{x}^{2}}+1}.$ C. $y=\sqrt{{{x}^{2}}-1}.$ D. $y=\frac{x}{x+1}.$

Lời giải chi tiết

Phân tích các đáp án:

Đáp án A.

Xem thêm: Avenue Là Gì - Trong Tiếng Anh

 Ta có $y=\frac{{{x}^{2}}-3x+2}{x-1}=\frac{\left( x-1 \right)\left( x-2 \right)}{x-1}=x-2$ nên hàm số không có tiệm cận đứng.