7 hằng đẳng thức đáng nhớ là một trong những kiến thức có thể nói quan trọng nhất trong trương trình toán lớp 7 và các cấp về sau. Trong bài ngày hôm nay, chúng ta sẽ cùng đi tìm hiểu về 7 hằng đẳng thức đáng nhớ và các dạng biến đổi tương đương của chúng. Ngoài ra sẽ luyện tập áp dụng các hằng đẳng thức vào làm những dạng bài tập cơ bản.
Bạn đang xem: Bài tập hằng đẳng thức
1. 7 hằng đẳng thức đáng nhớ
Cho hai biểu thức A và B. Từ hai biểu thức này, ta có thể lập ra 7 hằng đẳng thức như sau:
(A + B)² = A² + 2AB + B² (A – B)² = A² – 2AB + B²⇒ A² +B² = (A-B)² – 2AB = (A+B)² – 2AB
(A + B)(A – B) = A² – B²(A + B)³ = A³ + 3A²B + 3AB² + B³(A – B)³ = A³ – 3A²B + 3A² – B³(A + B)( A² – AB + B²) = A³ +B³(A – B)( A² + AB + B²) = A³ –B³2. Bài tập vận dụng:
Bài tập 1: Sử dụng 7 hằng đẳng thức Viết các biểu thức sau dưới dạng tổng
(2x + 1)²(2x + 3y)²(x + 1)(x – 1)m² – n²(5x + 3yz)²(yx – 3ab)²(x² + 3)(xˆ4 + 9 – 3x²)(9x + 3)²(xy + 2yz)²Lời giải
(2x+1)² = 4x²+ 4x +1(2x+3y)² = 4x² + 2.2x.3y + 9y² = 4x² + 12x.y + 9y²(x+1)(x-1) = x²-1m² – n² = (m – n)(m + n)(5x+3yz)² = 25x² + 2.5x.3yz + 9y²z² = 25x² + 30xyz + 9y²z²(yx – 3ab)² = y²z² – 2.yx.3ab + 9a²b²(x²+3)(xˆ4 + 9 – 3x²) = (x²)² + 3³ = x>xˆ4+27(9x+3)² = 81x² + 54x + 9(xy+2yz)² =x²y² + 2.xy.2yz + 4y²z² = x²y² +4xy² z + 4y² z²Bài tập 2: Sử Dụng 7 hằng đẳng thức đáng nhớ và rút gọn biểu thức sau:
A=(x+y)² – (x-y)²*Cách 1: Khai triển từng hằng số trong biểu thức B bằng hằng đẳng thức
(A ± B)² = A² ± 2AB+B²
A = (x+y)² – (x-y)² = x² + 2xy + y² – (x² – 2xy + y²) = 4xy
*Cách 2: Sử dụng hằng đẳng thức A²–B = (A + B)(A – B)
A=(x+y)² – (x-y)² = (x+y+x-y)(x+y-x+y) = 2x.2y = 4xy
B = (x+y)² – 2(x+y)(x-y) + (x-y)²*Cách 1: Khai triển từng hằng số trong biểu thức B bằng hằng đẳng thức
(A ± B)² = A² ± 2AB+B²
B = (x+y)² – 2(x+y)(x-y) + (x-y)² = x² + 2xy + y² – 2x² + 2y² + x² – 2xy + y² = 4y²
*Cách 2:
B = (x+y)² – 2(x+y)(x-y) + (x-y)² = (x + y – x + y)² = (2y)² = 4y²
Bài tập 3: Tính nhanh các biểu thức sau
153² + 94.153 + 47² 126² – 126.152 + 5776Lời giải:
153² + 94.153 + 47² = 153² + 2.47.153 + 47² = (153+47)² = 200² = 40000126² – 126.152 + 5776 = 126² – 2.126.76 + 76² = (126-76)² = 50²3. Các dạng biến đổi cần lưu ý
Chú ý phép tính toán, nhân đơn thức với đa thức, nhân đa thức với đa thức, triển khai hằng đẳng thức. Các bài toán yêu cầu viết lại biểu thức. (Cần lưu ý các quy tắc về nhân đơn đa thức và học thuộc 7 hằng đẳng thức đáng nhớ. Chú ý về dấu của số hạng và dấu của các phép toán.Có thể vận dụng các tính chất về 7 hằng đẳng thức đáng nhớ để tìm raBài tập về tìm giá trị nhỏ nhất của một biểu thức. Chúng ta thực hiện bước đầu tiên là biến đổi biểu thức yêu cầu về dạng M = A² + B trong đó A là một biểu thức chứa biến và B là một số hoặc một biểu thức số độc lập. Theo tính chất về bình phương của mọi số thực luôn không âm nên luôn luôn có A² ≥ 0 với mọi giá trị của biến số, do đó A² + B ≥ B nên biểu thức có giá trị nhỏ nhất bằng B. Dấu = xảy ra khi A = 0.Bài tập về tìm giá trị lớn nhất của một biểu thức. Biến đổi biểu thức yêu cầu về dạng M = -A² + B trong đó A là một biểu thức chứa biến và B là một số hoặc một biểu thức số độc lập. Theo tính chất về bình phương của mọi số thực luôn không âm nên luôn luôn có A² ≥ 0 với mọi giá trị của biến số, do đó -A² + B ≤ B nên biểu thức có giá trị lớn nhất bằng B. Dấu = xảy ra khi A=0.Chú ý: Dựa vào 7 hằng đẳng thức đáng nhớ trên ta còn có thể biến đổi và suy ra các đẳng thức tương đương như sau:

Từ hằng đẳng thức 1); 2); 3) ta có thể mở rộng thêm các đẳng thức sau:





Câu 1: Tính:
a, (x + 2y)2
b, (x – 3y)(x + 3y)
c, (5 – x)2
Lời giải:
a, (x + 2y)2 = x2 + 4xy + 4y2
b, (x – 3y)(x + 3y) = x2 – (3y)2 = x2 – 9y2
c, (5 – x)2 = 52 – 10x + x2 = 25 – 10x + x2
Câu 2: Tính:
a, (x – 1)2
b, (3 – y)2
c, (x – 1/2)2
Lời giải:
a, (x – 1)2 = x2 –2x + 1
b, (3 – y)2 = 9 – 6y + y2
c, (x – 1/2)2 = x2 – x + 1/4
Câu 3: Viết các biểu thức sau dưới dạng bình phương một tổng:
a, x2 + 6x + 9
b, x2 + x + 1/4
c,2xy2 + x2y4 + 1
Lời giải:
a, x2 + 6x + 9 = x2 + 2.x.3 + 32 = (x + 3)2
b, x2 + x + 1/4 = x2 + 2.x.1/2 + (1/2 )2 = (x + 1/2)2
c, 2xy2 + x2y4 + 1 = (xy2)2 + 2.xy2.1 + 12 = (xy2 + 1)2
Câu 4: Rút gọn biểu thức:
a, (x + y)2 + (x – y)2
b, 2(x – y)(x + y) + (x + y)2 + (x – y)2
c, (x – y + z)2 + (z – y)2 + 2(x – y + z)(y – z)
Lời giải:
a, (x + y)2 + (x – y)2
= x2 + 2xy + y2 + x2 – 2xy + y2
= 2x2 + 2y2
b, 2(x – y)(x + y) + (x + y)2 + (x – y)2
= <(x + y) + (x – y)>2 = (2x)2 = 4x2
c, (x – y + z)2 + (z – y)2 + 2(x – y + z)(y – z)
= (x – y + z)2 + 2(x – y + z)(y – z) + (y – z)2
= <(x – y + z) + (y – z)>2 = x2
Câu 5: Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng a2 chia cho 5 dư 1.
Xem thêm: Daesang Là Gì - Daesang Bao Gồm Những Phần Thưởng Nào
Lời giải:
Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)
Ta có: a2 = (5k + 4)2
= 25k2 + 40k + 16
= 25k2 + 40k + 15 + 1
= 5(5k2 + 8k +3) +1
Ta có: 5(5k2 + 8k + 3) ⋮ 5
Vậy a2 = (5k + 4)2 chia cho 5 dư 1.
Câu 6: Tính giá trị của biểu thức sau:
a, x2 – y2 tại x = 87 và y = 13
b, x3 – 3x2 + 3x – 1 tại x = 101
c, x3 + 9x2+ 27x + 27 tại x = 97
Lời giải:
a, Ta có: x2 – y2 = (x + y)(x – y)
b, Thay x = 87, y = 13, ta được:
x2 – y2 = (x + y)(x – y)
= (87 + 13)(87 – 13)
= 100.74 = 7400
c, Ta có: x3 + 9x2 + 27x + 27
= x3 + 3.x2.3 + 3.x.32 + 33
= (x + 3)3
Thay x = 97, ta được: (x + 3)3 = (97 + 3)3 = 1003 = 1000000
Câu 7: Chứng minh rằng:
a, (a + b)(a2 – ab + b2) + (a – b)(a2 + ab + b2) = 2a3
b, (a + b)<(a – b)2 + ab> = (a + b)
c, (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad – bc)2
Lời giải:
a, Ta có: (a + b)(a2 – ab + b2) + (a – b)(a2 + ab + b2) = a3 + b3 + a3 – b3 = 2a3